
Stephen Checkoway

Programming Abstractions
Week 8-1: MiniScheme A and B

Structure of MiniScheme
Environment

env.rkt

‣ Contains the environment data type 

(env list-of-symbols list-of-values previous-env)

‣ Contains other procedures to recognize and access the symbols, values, and
previous environment

‣ Your task is to implement (env-lookup environment symbol)

Structure of MiniScheme
Parser

parse.rkt

‣ Contains data types for let expressions, lambda expressions, if-then-else
expressions, procedure-application expressions and so on

‣ Builds a parse tree out of these data types from an expression 

> (parse '(let ([f (lambda (x) (+ x 1))]) (f 5)))  
'(let-exp (f) ((lam-exp (x) ...)) (app-exp ...))

‣ You get to implement all of this, bit by bit

Structure of MiniScheme
Interpreter

interp.rkt

‣ Contains data types for closures and primitive procedures (i.e., built-in
procedures)

‣ Takes an expression tree and an environment and returns a value  

> (eval-exp exp-tree environment)

‣ You get to implement all of this, bit by bit, at the same time you're
implementing the parser

A full grammar for Minischeme

EXP → number

| symbol

| (if EXP EXP EXP)

| (let (LET-BINDINGS) EXP)

| (letrec (LET-BINDINGS) EXP)
| (lambda (PARAMS) EXP)

| (set! symbol EXP)

| (begin EXP*)

| (EXP+)

LET-BINDINGS → LET-BINDING*

LET-BINDING → [symbol EXP]

PARAMS → symbol*

Programs are just structured lists
Parsing

Consider the program  

(let ([x 10]  
 [y 20])  
 (+ x y))

This is just a structured list containing the symbols let, f, x, y, and + and the
numbers 10 and 20

Your first task is going to be to build some new data types to represent
programs by parsing these structured lists

Start simple: only numbers

EXP → number	 	 parse into lit-exp

We're going to need a data type to represent literal expression (and the only
type of literals we have are numbers)

We're going to want something like 

(lit-exp num) ; constructor  
(lit-exp? exp) ; recognizer  
(lit-exp-num exp) ; accessor

Parsing numbers
Our first parser: MiniScheme A

(define (parse input)  
 (cond [(number? input) (lit-exp input)]  
 [else (error 'parse "Invalid syntax ~s" input)]))

This and the definition of the lit-exp data type belong in parse.rkt

You don't need to implement it exactly the way I do

That said, when I run (parse 52), I get 
'(lit-exp 52)

What, exactly, is the input to parse?

Scheme (and thus Racket) has a procedure (read) that reads input and returns a
structured list or an atom

The interpreter project flow

1. read returns a structured list which is passed to parse as the input
parameter

2. parse produces a parse tree containing nodes like lit-exp, let-exp, and
app-exp which is passed, along with init-env to eval-exp

3. eval-exp takes a parse tree and an environment and evaluates the
expression, returning the result

Do a demo with (let ([x 100] [z 25]) (+ (- x y) z))

Provide the definitions
(provide proc1 proc2 data1 data2 ...)

We want parse.rkt to be just one module in our program so make sure to
provide the procedures

‣ (provide parse)

‣ Also the procedures for creating and manipulating the lit-exp

Evaluating literals (interp.rkt)
Our first interpreter: MiniScheme A

We'll need to require env.rkt and parse.rkt to get access to those
modules' procedures

The main procedure in interp.rkt is eval-exp

(define (eval-exp tree e)  
 (cond [(lit-exp? tree) (lit-exp-num tree)]  
 [else (error 'eval-exp "Invalid tree: ~s" tree)]))

Extracts the number

from the lit-exp

Putting them together

> (parse 107)  
'(lit-exp 107)

> (lit-exp 107)  
'(lit-exp 107)

> (eval-exp (lit-exp 107) empty-env)  
107

> (eval-exp (parse 107) empty-env)  
107

What does (parse 15) return (assuming the implementation we've
discussed so far)?

A. 15

B. the result of (number 15)

C. the result of (lit-exp 15)

D. the result of (lit-exp "15")

E. It's an error of some sort

13

What does (eval-exp 15 empty-env) return (assuming the
implementation we've discussed so far)?

A. 15

B. the result of (value 15)

C. the result of (lit-exp 15)

D. It's an error of some sort

14

What does (eval-exp (lit-exp 15) empty-env) return (assuming
the implementation we've discussed so far)?

A. 15

B. the result of (value 15)

C. the result of (lit-exp 15)

D. It's an error of some sort

15

Read-eval-print loop

Having to call parse and then eval-exp over and over is a hassle

It'd be better if we could run a read-eval-print loop that would read in an
expression from the user, parse it, and evaluate it in an environment

minischeme.rkt will do this for you but it needs several things (provide)

‣ parse.rkt

- A (parse input) procedure

‣ interp.rkt

- An (eval-exp tree environment) procedure

- An initial environment init-env  

Something like  

(define init-env (env '(x y) '(23 42) empty-env))

Running the read-eval-print loop

Open minischeme.rkt in DrRacket, click Run

Enter expressions in the box (only numbers are supported right now)

Enter exit to exit MiniScheme

Let's add some variables!
MiniScheme B

Grammar 
EXP → number	 	 parse into lit-exp  

 | symbol	 	 parse into var-exp

Data type for a variable reference expression

‣ (var-exp symbol)

‣ (var-exp? exp)

‣ (var-exp-symbol exp)

Parsing symbols
MiniScheme B

(define (parse input)  
 (cond [(number? input) (lit-exp input)]  
 [(symbol? input) (var-exp input)] 
 [else (error 'parse "Invalid syntax ~s" input)]))

When I run (parse 'foo), I get 
'(var-exp foo)

Interpreting symbols
MiniScheme B

(define (eval-exp tree e)  
 (cond [(lit-exp? tree) (lit-exp-num tree)]  
 [(var-exp? tree)  
 (env-lookup e (var-exp-symbol tree))]  
 [else (error 'eval-exp "Invalid tree: ~s" tree)]))

You'll need a working env-lookup

> (env-lookup init-env 'x)  
23  
> (eval-exp '(var-exp x) init-env)  
23

Assuming that x is bound to 10 and y to 25 in init-env, what does 

(parse 'x) return (assuming the implementation discussed so far)?

A. 10

B. 25

C. The result of (lit-exp 10)

D. The result of (var-exp 'x)

E. It's an error of some sort

21

Assuming that x is bound to 10 and y to 25 in init-env, what does 

(eval-exp (parse 'x) init-env) return (assuming the
implementation discussed so far)?

A. 10

B. 25

C. The result of (lit-exp 10)

D. The result of (var-exp 'x)

E. It's an error of some sort

22

What can MiniScheme do at this point?

MiniScheme B has constant numbers

MiniScheme B has pre-bound symbols that are in the init-env

Homeworks 6 and 7

Multiple steps, each adding parts to the
MiniScheme interpreter

For each new type of expression

‣ Add a new data type

- ift-exp

- let-exp

- etc.

‣ Add constructors, recognizers and
accessors

‣ Modify parse to produce those

‣ Modify eval-exp to interpret them

EXP → number

| symbol

| (if EXP EXP EXP)

| (let (LET-BINDINGS) EXP)

| (letrec (LET-BINDINGS) EXP)
| (lambda (PARAMS) EXP)

| (set! symbol EXP)

| (begin EXP*)

| (EXP EXP*)

LET-BINDINGS → LET-BINDING*

LET-BINDING → [symbol EXP]

PARAMS → symbol*

